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1. ELEMENTARY INTRODUCTION TO SECOND
QUANTIZATION

1.1. QUANTUM OSCILLATOR AS A SIMPLE MODEL OF MANY-
BODY PROBLEM. BOSE QUANTA

a = %(f%—@i),

Main commutator relations for the algebra of creation and
annihilation operators

a,al| = I, (1)
N = dfa, (2)
A 1
H = hw (aTa + 5) : (3)
[N : aT] = a, (4)
[N, a] = —a. (5)
In Eqgs.(2) - (5):
N - the number-of-quanta operator,
H - the Hamiltonian.
Using the identity (Leibnitz):
[a,bc] = [a,b]c+bla,d],
we get
[a, am] = [a, aT] a4y [a, aT] =n (aT>n_1 : (6)

We define the vacuum state vector | 0) as a solution of the
following equation

a|0)=0 (7)
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and the state vector

a'|n) = Vn+1|n+1), (9)
aln) = vn|n=1), (10)
N|n) = n|n), (11)
H|n) :hw(n+%)|n>, (12)
(n|n) = L (13)

As a consequence of (8)-(10) we call:

a -the annihilation operator,

a! - the creation operator and

| n) - the state vector with n particle ( n quanta ).

Using the definitions (7) and (8) and Egs.(9) and (10), we
obtain the matrix elements

< kla'|n >= vn+ 18411,
< klaln >= /ndg,—1

and the corresponding matrices

a= {akn}7 &T — {a’in}

which we write as following infinite tables

(m=0) (n=1) (n=2) (n
(k=0) 0 V1 0
1

3)

a={ap}t=| (k=1 0 0 V2
k= 0 0 0

0
0
V3



(n=0) (n=1) (n=2) (n=3)
(k=0) 0 0 0 0
= fal 1 — (k=1) V1 0 0 0
CTWS T k=2) 0 V2 0 0
(k=3) 0 0 V3 0

From these tables we see that they are hermitian conju-
gate

{afa} = {aj}
We can also see that the matrix of the number-of-quanta
operator is diagonal:

(n=0) (n=1) (n=2) (n=3)
(k=0) 0 0 0 0
: (k=1) 0 1 0 0
N=Wul=1_9 0 2 0
(k=3) 0 0 0 3

1.2. HEISENBERG PICTURE FOR QUANTUM OSCILLATOR,
COHERENT STATES.

The Heisenberg picture is defined as the following trans-
formation of operators and the state vectors

AH _ eif:]t/hAe—i[:It/h, (14)
) Sehr = e P ) a- (15)

For the creation and annihilation operators in the Heisen-
berg picture we get

CLTH(t) eth/ha]Le—th/h,’ (16)
CLH<t) _ eth/hae_th/h. (17)
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They satisfy the equations-of-motion

9
Yh%ta}z(t) = [a}s(t), H], (18)
it an(t) = [an(t), H] (19)

The commutator relation (1) for operators which are taken
at the same time and the Hamiltonian (12) remain un-
changed:

an(t), aly(t)] = 1,
H(t)=H.

Then the equations-of-motion for the creation and anni-
hilation operators is written as

lal(t), H] = lali(t), H(t)| =

=hw[a2<t),a2<t>aﬂ({>] = —hwaL@), (20)
an(t),H| = |ag(t), H(t)] =
=hw |ay(t),ali(t)an(t)] = hwan(t) (21)

and we obtain a trivial solution of Eqs.(20) and (21)

#Lgta}{(t) — —hwaly(t) = aly(t) = afe™™", (22)
zhaatag( t) =hwag(t) = ag(t) = ae™™". (23)

We define the coordinate and the momentum operators:

o= f( (a + af) (24)

p = —27\/ (a —a ) (25)



In the Heisenberg representation they are written

z(t) = % T:w (ae wt 1 gle “’Jt>, (26)
p(t) = _i% hmw (a,e_m _ aTeiwt> ’ (27)
AX =X — X . AX? .= X2 X2,
Az(t) = 2(t) — Ag_t),
Ap(t) = p(t) — p(?),
+(({a,a'}) = 2(a)(ah))), (28)
(AP*(t)) = hn;w <<A t2> 2t | (N\g2)e 2t _

~({{a,a*}) = 2(a)(ah)). (29)

L~

(Az?(t)(Ap*(t) = b (((Aa2>6_2m + (Aa+2>62m>2

— (a,a'}) — 2(a)(ah)) = 2 (30)
4

From a simple analysis of the Heisenberg unequality (30)
we come to a definition of coherent states of Bose oscilla-
tors, for which the unequality achieves it’s low boundary:

S

a|a)=ala) (31)

and conclude that the vacuum state | 0) Eq.(7) is also an
eigenstate of Eq.(31) with the eigenvalue which is equal
to zero:

a|0)=al0), a=0.
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Proceeding in this way, we get for coherent sates the equa-

tion
1

(AT ONAP) = 2

Now we will find eigenvectors of the coordinate operator
(24) and we introduce first the basis set {¢, ({)}:

H(Q) = (-1 (re-¢, (32
66 = e e ) 33
which satisfies the recursive relations:
(e 5’5) (€)= VI €), (31)
(5 _ _) = 2(n + ) (€ (35)
TG J_wnl "+1wmﬂ© (36)
) = | 1() " T (o). (37)

Using the functions (32) and (33), Egs.(9) and (10) and
the recursive relations (34)-(37), we show that the state
vector

| o) = ;%(fo) | n) (38)
is an eigenvector of the operator:
1
slatad) &)= ¢§@+a)§¢ﬂ&ﬂn%:
=& | o) (39)

and we prove the representation
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5 (a—ad) Ty (50)|n>=

EH

o1
i s (=) 1) = -

= ’L— | o)

23
From Eqs.(39) and (40) we conclude that

(6o | % (CLJFGJT) | n) = &o(éo | ),

(& —z% (a—al) | n) = —za—§0<§o ).

Thus, we come to the wave function

W) =(|n)

(40)

(41)

(42)

and to the coordinate and the momentum operators of

the quantum oscillator:

0

peVv (§) = _Zﬁ—f (€),

EV(¢) = €T (€).

(43)

(44)

These formulas (43) and (44) and the definitions (39), (40)
lead to the coordinate representation for the creation and
annihilation operators - first formulas of the 1.1.Subsec-

tion. Finally we explicitly solve Eq.(31) by writing

o

o) =5 T 1)

al

! o al
= ZﬂaT | 0) = e | 0).

(45)

This solution is non-normalized, the corresponding nor-

. L. . _lof?
malization factor is —Lye~ 2.
(m)4



Using rather obvious transformations, we write also the
wave function for the coherent state

a (¢ 0 2
(€] e [0y = evaTey =

2
2 —gd 2 _ (e o
— e%eﬁaze_é — e%e (§ \/i)

and the wave function of normalized coherent states is
written as follows

5,6 - e Fese ()
()

2. SECOND QUANTIZATION OF FERMI OSCILLA-
TOR

2.1. FERMI QUANTUM OSCILLATOR AS ONE-BODY PROB-
LEM.

Main commutator relations for the Grassman algebra of
creation and annihilation Fermi operators:

{a,aT} = 1,
{ava} = 0, (46)
{aTvaT} = 0,
N = da, (47)
Hy = edla, (48)
[N : aT] — a, (49)
[N,a] = —a, (50)

where
N - the number-of-particle operator
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A

H, - the Hamiltonian
Main identities for commutators and anticommutators:

la,bc] = {a,b}c—b{a,c}, (51)
la,bcd] = {a,b}ed — b{a,c}td +
bc{a,d} — 2beda, (52)
la, bedf] = {a,b}cdf — b{a, c}df
+ bc{a,d} f — bed{a, f}. (53)

We define again the vacuum state vector | 0) for
Fermi oscillators as a non-degenerate solution of the fol-
lowing equation

a|0)=0, (54)
and the state vector
[1)=a'|0), (1]1). (55)

Using the definitions (46)-(50), we conclude that for the
Fermi oscillator
" =0, if n>2.

Hence, for the Fermi oscillator only two state vectors ex-
ist: | 0),| 1) . With this restriction we rewrite Eqgs. (9) -
(13) as follows

at|n) = Vn+1|n+1)dy,
al|l) = Vn|n—10,,
Nin) = n|n) (n=0,1),
Hy|n) = €| n)dn (n=0,1),

n|n)y =1 (n=0,1), (60
As a consequence of Eqs.(47),(48) and (55)-(57) in the
case of the Fermi oscillator we also call
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a -the annihilation operator,

a! - the creation operator and

| 1) - the one-particle Fermi state vector.

Using the definitions (56), (57) and (58), we obtain the

matrix elements

< k|CLT|TL >= VN + 105n+10,00k1,
< k|a|n >= \/ﬁdkn_15n15k0

and the corresponding matrices & = {a;,}, a’ = {a},} which
we write as following tables

d_{akn}_(g é),

i =ty = (1 o)

From these tables we see that they are hermitian conju-
gate: {a},} = {a*,}. We can also see that the matrix of the
number-of-quanta operator is diagonal:

N{Nlm}(gg).

2.2. HEISENBERG PICTURE FOR FERMI OSCILLATOR.

The Heisenberg picture is again defined as transforma-
tions of operators and the state vectors which were writ-
ten in Eqgs.(15) - (17) and they satisfy the equations-of-
motion (18), (19). We rewrite these transformations and
equations for Fermi operators:
AH _ eiﬁot/h/ie—if:fot/h7 (61)
) sehr = e Mot/ ) a, (62)
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a}{ (t) _ eiflot/ha’(e—iﬁot/h

Y

CLH(t) _ eifrf()t/hae—if:f()t/h’
.0 :
n2aly) = o), i)
.0 :
12 anlt) = lanlt), A

(63)
(64)

(65)

(66)

with the anticommutator relation (46) and the Hamilto-
nian (57) which remains unchanged if the operators are

taken at the same time:

{an(t), aly(t)} = 1, Hy(t) = Hy.
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Then the right-hand side of equations-of-motion for the
creation and annihilation operators is written as

aly(t), Ho| = [ (), Ho(t)] = e [aly (), aly(H)au(t)] =
= ¢ ({ah(t), ah(®)}an(t) — ah(t){ak(t),an(t)}) =
= —ealy(t), (67)

an(t), Ho| = [an(t), Ho(t)] = €[an(t), ay(t)an(t)] =
¢ ({an(t), ay(®)}an(t) — an(®){ali(t),an()}) =

= eay(t) (68)
and we obtain a trivial solution of Eqs.(67) and (68)
m%a}[(t) — —ealy(t) = aly(t) = afetin, (69)
#z%ag(t) =eag(t) = an(t) = ae™n . (70)

2.3. WAVE FUCTION OF FERMI OSCILLATOR. COORDINATE,
MOMENTUM AND INTERACTION OPERATORS.

Here we notice that the operators (24) and (25) do not
commute with the corresponding number-of-particle op-
erator N , therefore the coordinate and the momentum
of one Bose oscillator is not defined. This is not the case
for Fermi oscillators. In order to write expressions for
the coordinate and the momentum operators which com-
mute with the number-of-particle operator we introduce
a set of mutually anticommuting creation and mutually
anticommuting annihilation operators

{a;}, {al} G =1,2,...N).

and we suppose that there is a non-degenerate vacuum
state-vector | 0), (0 | 0) = 1. Then the vacuum state is
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simultaneous vacuum sate for all annihilation operators:

a; | O> = 0. (71)
Now, we define the algebra:
{aj7 az} - 51'/67 {ajv ak} =0, {a}, aL} =0 (72)
and the operators
N = Za;[aj, (73)
j
IA{O = Zeja}aj, (74)
j
Vg = g (75)
[N,CL]'] = —aj, (76)

which are an extension of (46) -(50). 2V state vectors

10), al | 0),..., alal |0),..., alualal | 0),...

are mutually orthogonal and normalized. They are eigen-
states of the operator N (73) and the corresponding eigen-
value is equal to the total number of creation operators
in a state vector. These numbers are not bigger than N.
We introduce now an orthonormal basis set of N func-
tions ¢, () and the following linear combinations of the
creation and annihilation operators:

'J)a ('F) - ZJ: ¢j0 (F) Qjo, (77)
Ol (7) = > &%, (7) al. (78)

For infinite number of particles they satisfy the anticom-
mutator relation:

{0o (1), 03y (M)} = 0 (F—7) 8oy,
{77?0 (’F) 777%0’ (Fl)} = 0,
{0l (@, 9L (™} =0 (79)
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and we show that the state vector

| 7)o = 9% (7) | 0) (80)

is an eigenstate of the coordinate operator for Fermi par-
ticles:

R=3 [ dri (7) 7, (7). (81)
With the simple algebra it is then obtained
R| M=% [d'0) (7)o (7), 9L (P} | 0) = 7| 7). (82)

Here the anticommutator (79) has been used. The same
algebra leads to the similar representation for the mo-
mentum operator

P=3 [ drj} () (~hV7) iy (7 (83)
and
P 7)o =5 [ a0 (%) (<¥2) by (%), 30310
= i hVr| )y (84)

The number-of-particle operator (47) and the Hamilto-
nian (48) are written as

A

N = Za}aajg = Z/d?)rl@/;:;/ (Fl) %' (FI) )
iy = Talueiny - > [ gl ) b () by (7) =

= 5 [P ) (e + 0 ) G ). ()

Following commutator equations can be easily proved:

fv,ﬁ] = 0,
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[N, 13] = 0,
N, Hy| =0 (86)

and we can write the one-particle wave function as the
matrix element:

Wy (7) = 0| 95 (7) [ D)o (87)
If the one-particle state (55) is specified as
[ 1)o = aj, | 0), (88)
then
Vo (1) = ¢uo (7). (89)
Eq.(86) is interpreted as number of particles conservation
in a system with the Hamiltonian (86) and Eqs.(83), (84)
and (87)-(89) give us
0<F| é | l>0 = 7V, (ﬂa (90)
| P|l)y = VA, (7). (91)
Thus, we have obtained the conventional representation

of the coordinate and the momentum operators in the
space of one-particle wave functions.

2.4. MANY-BODY SYSTEM OF QUANTUM OSCILLATORS.

A state vector of n-body system of identical Fermi parti-
cles is usually expanded by state vectors

| nmy) = jG{M}a}aj | 0), (92)
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where M is a set of n indexes or by state vectors

| 7?170-17 ... 77?n70n> = _11_[ ,&lj (FJ> | 0>7 (93)

J
which are obviously n-particle generalization of the sate
vector (80). If we apply operators (81), (83) and (85) to
the state vector (93), we get

R|#,01,... o) = ( ) f;-) | 7,01y Ty on),  (94)
7 n

P| 7,01, P on) = ( 3 W@.) | 71, 01y - ey Ty ) ,(95)
71=1,.., n

N | 71,01,y TnyOn) = N | 71,01, Tn, On), (96)

Hy | 7,00, Py 0p) = ( 12 ﬁ(@-)) | 71,00, .., Ty ) 97)
1=1,...,n

These expressions (94)-(96) lead to coordinate represen-
tations of corresponding operators in the space of wave
functions:

(T1, 015+, Ty O | R )= 12 T, 01y ooy Ty O |}, (98)
j=1,..., n
(FLyo1, . Toyon | P|) =
= Z —Y}LVF].<T_"1,0'1,...,F”,O'” |>, (99)
71=1,...n
(P, 01y oo | N ) =0, 01, Py o |), (100)
<F170-17 yT'ny On | HO |> —

= ¥ h (7)) (P, 01,y oy ). (101)
Using Eqs.(93) and (94), we calculate the wave function

(P, 01y ey a0 [) = (0] I zﬁaj(@) I azak|o>. (102)
j=1,...n ke{M}
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We write first the identity:

<O | I1 Ajo; 11 a/t:ak | O> = det{(sjﬁj kak}7 (103>

jeMy 7 ke{M)

which is in fact a simple variant of the Wick’s theorem
and the right-hand side of Eq.(103) is an antisymmetrized
product of the Kronecker deltas 5jgj ko, (Slater determi-
nant). This identity can be proved if we write the left-
hand side of as a mean value of the commutator

| 0)

and use an expansion for the commutator as a set of anti-
commutators which is similar to Eq.(52). The wave func-
tion (102) is written then as the Slater determinant:

det{¢jaj (Fk) 50j0k}'
Concluding this Subsection, we introduce the two-particle

interaction operator in the second quantization represen-
tation. It is written as:

A

V =

<O | Gjiojy -« - Qjp_y0j, 4

T
@ j0 gy, 9 II Aoy,
ke{M}

<Z.] || kl>a2’0a}g’alo’aka -

NO | —

>
ijkloo’

= 5 [ [drd eV (7= ) ) () b () e () (104)

and an application of this operator to the state vector
(93) results in

V | 7?170-17---77?7170-71> =

1 . . .

= S S [ @rd V(7= )0 ()b () o (7)
<. T ()] 1) =

> V(rm—=r)]|rm,o0...,T0n.  (105)
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In the space of the wave functions this interaction is writ-
ten as multiplication operator

<_)170-17"'7/Fn70-n | V |> —

-7&21 V(7=71]) (A0, Tnonl). (106
j=1,...,

] n

N | —

This expression is obtained when we expand the com-
mutator in (105) in a set of anticommutators recursively
using the identities (51) - (53).

2.5. WICK’S THEOREM.

The normal-ordered product or normal product is defined
as an antisymmetric product

: ABCD .. .: (107)

of the creation and annihilation operators with all cre-
ation operators been moved to the left side of the product.
For two operators difference between the normal product
and the ordinary product is called a contraction

AB =: AB : +A'B'. (108)

Normal-ordered product is obtained from the ordinary
product by subsequent use of the anticommutators (72).
A simple example of Eq.(108) the first anticommutator in
(72) when it is written as

ajaja,ka —: ajgja,zak L 00, koys (109)
where we have used the antisymmetry of the normal prod-

uct

S N B
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From Eq. (109) we get then a contraction

@ O, = Bjo; oy (110)

and , obviously, the contraction

aj, a, =0. (111)

Joj
Any product of operators can be transformed to the nor-

mal product plus normal products with single, double,
and maybe fully contracted products:

ABCDF ...=: ABCDF...:+:ABCDF...:+
-ACD'F....+.. +:AB'C'DF" ...+ ...: (112)

- Wick’s theorem. An example of a fully contarcted prod-
uct is the Slater determinant of Kronecker deltas in the
right-hand side of Eq.(103). It is a product of all possible
contractions in the operator
I aj; I al,.
je{M} ke{M}

Now we prove a lemma which states that the following

equation is valid:

-...ABCD:F = :...ABCDF :+:...ABCD'F' : +
+:...ABC'DF': + :...AB'CDF': +...
+:...AABCDF': +... (113)

It is clear that the only non-trivial case when Eq.(113)
has to be proved is the case of [' being a creation oper-
ator and all ... ABCD an annihilation operator. Then we
can omit the symbol of the normal product in the left-
hand side of Eq.(113) and using anticommutators (72),
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we subsequently write

...ABCDF = —...ABCFD+:...ABC{D, F} =
=...ABFCD—:...AB{C,F}D :+:...ABC{D,F} :=
— ...FABCD—:... {A,F}BCD:+:...A{B,F}CD : —

—:...AB{C,F}D :+:...ABC{D, F} : (114)

In order to compensate the alternating signs in Eq.(114)
we introduce a normal product with contractions and pre-
serve the order of normal-ordered operators, writing, for
example, the following expression for the normal product

....ABC'DF' ¥ _ . _AB{C,F}D:.

The last equation in (114) together with this definition
turns to Eq.(113) and we have proved the lemma.

The Wick’s theorem is now easily proved by mathemat-
ical induction. It is valid for two operators ( Eq.(109)).
We make a supposition that is also valid for n operators.
Then for n + 1 operators it is valid according to Eq.(113).

2.6. PARTICLE-HOLE REPRESENTATION FOR CREATION AND
ANNIHILATION OPERATORS.

In the previous subsection the Wick’s theorem has been
proved for any product of creation-annihilation operators.
A simple consequence of this proof is the Wick’s theorem
for any separate linear combination of creation operators
and annihilation operators, for example, the combinations
(77) and (78). In this case the contraction (110) is written
as

O (Pl (71) = 6 (F = ) S (115)
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and

0¥ (7) g (7) = 0. (116)

Simultaneous linear combinations of both creation and
annihilation operators can also be normal-ordered, but in
this case the normal ordering corresponds to a new vac-
uum state vector. An example of these transformation is
the particle-hole transformation. The annihilation oper-
ators of the one-particle states which are occupied in the
new vacuum |) create hole states in the new
vacuum and they are in fact hole creation operators and
the corresponding

ajq; = b} (117)

joj
and the corresponding creation operators annihilate the
hole state and therefore they are hole annihilation oper-
ators

aly; = bjo, (118)
for all {jo,;} which are occupied in the new vacuum state
)-

These new creation-annihilation operators satisfy the
anticommutator relations (72), the linear combinations
(117) and (118) are canonical transformations and they,
obviously, have the contractions

@jos0ho, = Gjoj ko (119)
Al hy, = 0, (120)
Vg Obn, = Ojos kops (121)
Db, = 0. (122)
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We denote as N manifold of indexes of all occupied one-
particle states of an spin-unrestricted state vector |) and
introduce the occupation-number-function

o) = o e S n (123
Using (118)- (121), we obtain contractions
5O = 5 b1, ()50
8y, (7) 6oy o0 (1 = ), (124
BV ) = b3y (00,5, () 5yl 125

A summation of (124) and (125) gives, obviously (115).

The conventional many-body perturbation theory in
the time-dependent form can be formulated in terms of
integrals with the Wick’s time-ordered integrands. This
formulation is conveniently used for partial summation of
perturbation expansions. The operators (77) and (78) of
this formulation are transformed to the interaction pic-
ture ( Dirac picture ) by the unitary operator

e_ighmf

( the following formulas we write in atomic units, where
h =1 ). For the one-electron Hamiltonian (85) this trans-
formation gives

1&0 (7?7 t) - Z qude_iejt (F) Qjos (126)
)

OF (7 1) = T ¢, (F)e“ital,. (127)
)

These expressions ((126) and (127)) are again linear com-
binations of the creation-annihilation operators and for
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the basis set of spin-orbitals {¢,(i")} which is chosen as the
set of the eigenfunctions of the operator i () in (85) their
contractions in the Wick’s normal-ordered expansion of a
product of operators i, (7,t) and ¢! (7,t) are written as
follows
wc,I (7,1) TA];,’ <F’7 t,) = Z Qstj (7) 50'j o
joj
X @y, (1) 6, €79 (1 = n(joy)), (128)
I () (Ft) = X oy (Fr1) 60,0
joj
X ;Uj (’F,) 503’ U’B_iej (t_t,)n(j0j>° (129)
Other contractions of binary products of operators (126)
and (127) are equal to zero.

Concluding this subsection we derive Wick’s expansion
for the Wick’s time-ordered product of operators (126)
and (127) as a sum of normal-ordered products. Using
contractions (128) and (129), we write

T ($o (7 1) 9L (7,1)) € 4y (7o) 0L (7. 8) 0 (t — ) —

— L (7 ) e (F1) 0 (1 —t) =
= Py (FO) L (7, 1) -+ o, (F) gl (7, 0) 0t —t) +

— PN )L (P —t) =
=y (7)) (7, ¢) + T (¥ (7 8) Pl (7,¢) (130)

T (4§, (7,0 90 (7)) < (70l (7 ¢) 6t — ) +
— L ()Y (T —1)  (131)
is a definition of the time-ordered contraction and Eq.(130)

is the Wick’s theorem for time-ordered product of two op-
erators (126) and (127). In order to prove the theorem for
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any product we use again the mathematical induction and
suppose that this statement is valid for for time-ordered
product n operators

\T(ABCDF...)Jz:ABCDF...:+:A’B’CDF...:+

ACD'F...:+...+:AB'C'DF" ... +...: (132)

with time-ordered contractions:

AB = T(AB),
AD = T(AD),
BI/FII ..E, T(B”F”>,

For n+1 time-ordered operators we find an operator with
the minimal time ( M ) and write

T(ABCDF...M..)=(-1)"IT(ABCDF..)M  (133)

n+1 n
where |[P] is the pairity of permutation of the product
ABCDF...M... to ABCDF...M. For T(ABCDF...) we

J

can use Eq.(130) ( Wick’s theorem for n time-ordered op-

erators and with time-ordered contractions ). For prod-
ucts

- ABCDEF ...

- A'B'CDF ...:
-ACD'F ...

- A'B""C'DF'"". ..

~

~

SEEEX

~
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with time-ordered contractions (132) we use the lemma
Eq.(113) with ordinary contractions, but the time of M is
minimal and we can write

AM = T(AM),
B'M' = T(BM),
C'M = T(C'M),
D'M' = T(D'M),

(134)

Thus, we have proved the Wick’s theorem for time-ordered
products. Finally we write the time-ordered contractions
for a}aj, Aoy,

Qo (8) aly, (8) = X 80030 ()

Joj
X 0j0nee ™90 (1= n(joy)),  (135)
aly () Gl (8) = Z i (7)
95
X B1jda0;e 9 n(jor) (136)

and

T (a;gak. (t) CL%Z <t’)> =>> 5kj50-ko'j (F) 5lj50laje—i6j (t—t")

Joj

X (L =n(jo;)0(t —t) —n(jo)d (' —1)).  (137)

3. ONE-PARTICLE GREEN’S FUNCTIONS IN THE
MANY-BODY THEORY

3.1. GREEN’S FUNCTION OF NON-INTERACTING PARTICLES

From Egs.(128), (129), (131), (135) - (137) we get equa-
tions for expectation values
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(| T (o (7 )L (7)) ) = £ e 7975, 10,

]UJ

<oy (F) %, (F)
(L= n(jo) 0 (t—t) —n(o)d (' —1))  (138)

and

(| T (ko (t) aly, (1)) [) = ]Z eI 6136505 (F) 6100,
oj

X (L =n(jo;) 0 (t —t') —n(jo;)d (' —1)). (139)

These expectation values satisfy the following equations:

(% =BT (b (R0) 3L (7,6)) 1) =

— 6B (F=) 6t —1t) 6, o, (140)
= (i520km = {bem) (1 T (e ()0l () 1) -
= 905,10 (t — t') 0y o, (141)

where in Eqgs. (140) and (141) A and {h};,, is the ope-
rator from (85) and it’s matrix in the basis of spin-orbitals
{#;(")}. These expectation values are usually multiplied
by —: and called one-particle Green’s functions of the

system of non-interacting particles with the Hamiltonian
(74)

G L (1)

kok lol )
—’L<| T(Cl,kgk a,lal ) | — —ZZG ze](t t)ék] 010 (’F) 5l] 010
]UJ
X (1 =n(jo;))0(t=t) — n(jo;)0 (' —1)). (142)
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3.2. ONE-PARTICLE GREEN’S FUNCTION OF INTERACTING
PARTICLES

For system of interaction particles ( electrons ) with the
Hamiltonian:

H=Hy+V (143)

in the Heisenberg picture the transformation of Schrodinger
operators is done by

e—th,

which defines the corresponding Heisenberg creation
-annihilation operators

A

sy (t) _ ethape—ifIt’

aly ()= emta];e_im. (144)

Here and in the following subsections we will also use in-
dexes p,q,r,s,... . instead of indexes jo;, koy,lo;,... . The
one-particle Green’s function is then defined as the ex-
pectation value of the time-ordered product of operators

(143):
Gpg (t,) ' —i(| T (a, (t) af () ]), (145)

q

where brackets |) or (| in (145) represent an eigenstate
vector of the Hamiltonian (143). In an explicit form this
definition of the one-particle Green’s function is written

G (t,8) E —i{| ay(t)al(') [0t — t') +i{| al(t)ay(t) O —t)

= GW )o@ —t)+ G ¢, 1) 0 —1), (146)
and the Hamiltonian in these notations is
A 1
H=% hp,qaztaq +- ¥ (p,q|rs) a;aiasaq. (147)
P 2 p,q,r,s
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Equations for the one-particle Green’s functions are ob-
tained from the equations-of-motion (65) and (66) after
the substitution Hy —» H

OO 1) = ~i( [a0), Blal() ), (118)
0GR (1,1 = ] al(t) aplt), H] ]) (149)

with the Hamiltonian (147) they give
0 .
ZaGp,q(tvt/> = Zlhp,p’Gp’,q<tat,) — ,Z (p,p | 7,9)
P p,r,Ss
(| T (af (¢) as (t) ay (t)af (¢) [) + 0 (t = 1) Gy, (150)
where again T is the chronological ordering symbol of
Wick.

As it is seen from Eq.(146) the retarded part of the
one-particle Green’s function in the limit ¢ — ¢t — +0 is
proportional to the one-particle density matrix

lim G, (tt) = lim GE (¢ t) =

t'—t—+0 t'—t—+0 P14

= 1D, (151)

and, therefore, it can be used in calculations of mean val-
ues of the one-particle physical quantities. It can also be
used for a calculation of the total energy of the interacting
particles. We can write, for example,

0
(z‘aépp, + hpp,) GV (t,1). (152)

If we multiply the interaction operator 1% by a coupling
constant A and use the Hellmann-Feynman theorem then
the energy is expressed as
i FdA : 0
E = E(] — —/— Z 5pq lim (Zaé})ﬂ — hpp’)

20 A p,pl,q t—tt

E:—E > Opg lim

2 p,pl,q t—tt
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x (Gp,q (t,) — GY) (¢, t’)) . (153)
In Egs.(152) and (153) ¢/ =t =t — t+0.

3.3. KALLEN - LEHMANN DECOMPOSITION OF THE ONE-
PARTICLE GREEN’S FUNCTION

Green’s functions of interacting particles can not be writ-
ten in the form the spectral resolutions for non-interacting
particles (138) and (139) with eigenvalues e~i(="), For
Green’s functions of interacting particles there is also a
canonical decomposition, which can be used in different
approximations. One of such approximations is written
below. In order to obtain this decomposition we write
two resolutions of unity in subspaces of n — 1 and n + 1
particles

Sn—1,5)n—1,j|= I,
)
)

for eigenstates of corresponding Hamiltonians

A A

Hn—l; Hn+1-
Then the following expansions are obvious
Gpg (1) = =i X (| ap(t) [ n+1,5)(n+1,5 | al(t) )O(t — ') +
J
+i (] af(t) [n—1,5)(n — 1, | ay(t) Ot — 1)
J
= Gt t) ot —t)+ G ()0 —1), (154)

orn+1 /
G](;Z) 0= _Z§<| ap | n+ 17j>exp_z(Ej+ —Eo)(t=t)
x(n+1,5lal]),  (155)

30



) . —i(En1- r_

xn=1,j]a,]).  (156)
The one-electron overlaps

(n+1,7al ),

(n—1,71apl) (157)

compose rectangular matrices with non-orthogonal rows.
The same decomposition is also valid for the one-particle
density function

D =3(a,| n+1,5)(n+1,5]dl]), (158)
]

p,q

Dp,q:D(R) - 5pq_ng;) -
= X{laln—1j)n—1jlal). (159
J

Equations (154)-(155) resemble transformation of two ma-
trices to diagonal matrices, which can be done by a non-
orthogonal transformation. The transformation is ob-
tained from the generalized eigenvalue equation. It is
simple to get this transformation for small values of ¢ — ¢/
up to the first order in this difference. For the retarded
Green’s function we need to solve the equation

L o
§<| al [ay, H] )¢, = ejz/D(g,pM;,. (160)
p

The set {d) = lA)%qbg;} is mutually orthogonal and it is
then used for pseudospectral resolution of matrices in

both sides of Eq.(160):
A A l . A l . %
(| af |ap, H| |) = X D2®e;(D2®))*,

q .
J

D,, =¥, D2®)(D2d])* (161)
J



G (1, 1") = ? D2®iexp i _I—Eo)(t"t)(b%@g))* +... (162

An ellipses in Eq.(162) denotes terms of the second and
higher orders. A similar expansion is also valid for the
advanced Green’s function and it can be shown that this
algorithm gives the exact energy of the state function |)
which is obtained from a variation principle. Actually, for
any MCSCF function if the formula (153) for the energy
is used.

In the CAS decomposition without the inactive sub-
space the exact Green’s function is obtained according to
the Killén-Lehmann formulas (154) and (155) when the
states | n — 1,j) are positive ionic CAS states built of ac-
tive orbitals and the ones | n+1, j) are negative ionic CAS
states built of active orbitals and the CAS states with one
virtual (secondary) orbital. In this case the CAS energy
is obtained using both Egs.(152) and (153).

3.4. PERTURBATION EXPANSION FOR GREEN’S FUNCTION

A perturbation expansion for one-particle Green’s func-
tion is obtained in the Dirac picture

A

an, (t) = it e—iﬁot ar, eiﬁot 6—1‘}]{157
a}{q (t) _ eiﬁte—iﬁgta} qeiﬁgte—iflt’ (163)
where
ot —iot _ & (0,1),
gifte=ifit — g (t,0) (164)
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evolution operators in the Dirac picture. The general
expression for the evolution operator is

eiﬁote—iﬁ(t—t/)e—iﬁot, — 5‘1 <t, t,) , (165)

which is expanded in the perturbation series

A | e ~ ~
S (t,t) =¥ L [ T(V@)V(ta)...V(t))dty ... dt (166)
with the interaction in the Dirac picture
V(t) = eHotyye—iHot, (167)
In the perturbation expansion limiting values of S (¢,t)
are used:
57(07_00 | >\)7S’V<Ooao | )‘)

and

A

S (00, —00 | A) ¥ S (00,0 | A) S, (0, =00 | A)
- the complete S,- matrix. If we redefine time-ordered
products in integrands of (166) according to the rule

T(V(t)...V(t)...V (t) exp™"minl) (168)
we obtain
S0, =00) = [ 5= P}O 7
SR éo +WV§ (Ho— E)dE  (169)
and with
T(V(t)...V(t;)...V (t) exp™mesl) | (170)
S (00,0) = [ (Ho— E)VE - F}oﬂ'v
.f/E - ];0 " wdE (171)
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for the 1-th order of the series
S, (0,400) = [ + ¥ S (0, +:00). (172)
=1

If we apply Eq.(169) to an eigenstate | F;) of H; (101) and
Eq.(171) to (E, | we then obtain

51 (0, ~00) | Ev) =
l
. 1 1
ty 2 . { 2 . ] | E0>7
Ey— Hy+11y | Eog— Ho+ 1y
(Eg | S (00,0) =
!
. 1 1
gV
Ey— Hy+ 1y Ey— Hy + iy
Then from the expansion (172) for small v it follows that
S, (0, —o0) | Ey) and (Ey | S, (c0,0) are equal to first-order-
pole contributions to the contour integral in

98, dz— | Ey) and 5-(Ej | fEy - —dz They do not exist when
0l tends to zero, but one can easﬂy check that

- S, (O, —o0) [ Eo) )
=0 (Ey | S, (0,—o0) | Eg)  (Eo |)

(173)

and

(B |80 (|
120 (Ey | Sy (00,0) | Eo) (] Eo)
Hence, we can write

S, (0,—00) | Eo) =c |y +..., (Ey | 8, (00,0) = (| +.... (174)

In these asymptotic relations the ellipsis stands for the
terms which vanish in the limit v — 0. From Eqs.(174)
for the normalization constants we obtain

cd = (Ey | S, (00, —00) | Eg) + ... (175)
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and from the definition (145) we receive the formula for
the one-particle Green’s function in the Dirac picture:

G (1,1) = (B | 8, (00,0) T (S, (0,1
xary () S, (t,¥) aly (#) S, (,0)) 5, (0, ~) | Fi)
(Eo | Sy (00, —00) | Ep)

The right-hand side of Eq.(176) is usually written in the
following compact form

(176)

Gp,q (t,t’) —
1(Eo | T <a1p (?) Aa}q (') S, (oo, _OO)> | Ep)
’ (Ep | Sy (00, —00) | Ep)

Eq.(177) is in fact a series. If it converges uniformly, we
can go to the limit v — 0 and write

Gy (1,1) —
1<E0|T<a—7p(>a}q( ) | Eo)
U (Eq | S (o0, 00) | E0>

This formula together with the series (166) is used for
perturbation expansions of the one-particle Green’s func-
tion. Here we make several remarks. The asymptotic
formulas (174) and (175) are equivalent to the adiabatic
theorem by Born and Fock and the limit v — 0 exists only
for a non-degenerate state vector | Fj). For a degenerate
state vector we can distinguish two cases:

1. | Ep) is degenerate and |) is non-degenerate. Then
the convergency can achieved by a suitable change of the
Hamiltonian f[o.

2. Both | E;) and |) are degenerate - open-shell case - then
the state vector | Ej)) projects out other state vectors of

Yo

(178)
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the open shell and the formula (178) is valid again. A per-
turbation expansion for the one-particle Green’s function
is usually obtained from the representation (178) and the
series (166). In a straightforward application of this for-
mula one has to reexpand the series in the denominator
of Eq.(178), but for a one-configuration reference state
vector | Fj) one can factorize the nominator and cancel
(Ey | S (c0,—00) | Ey) - vacuum terms cancellation theo-
rem. This factorization is done with help of the Wick’s
theorem. According to the theorem the integrand of

(Eo | T (ap( )aj (¢') 8 (00, —00)) | Ey) =

ll,/ By | T (ay (8) af ()
xV(tl)V( 2) ... V(1) | Eo)dty ... dt, (179)

is expanded in the sum of fully contracted products. Work-
ing out possible contractions we collect the terms with
fully contracted products of creation-annihilation opera-
tors within the different groups of interaction operators
V(t,)V (ty,)...V(t;,). Remaining [ —k interaction operators in
the /[-th order of the expansion are connected by contrac-
tions altogether and and with the operators a, (t) a} (') of
the time ordered product in Eq.(179). We will call this
group of operators connected. Due to the permutation
symmetry of the interaction operators in the time ordered
product we finally obtain in the /[-th order k,! nm=1—k
different cases. Hence, making summation over all poOssi-
ble values of k, we get the factorization
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<Eo|T(ap<t>a<>< —00)) | Eo) =
L B | T (ap () a] ()

m {mm! /=

X v<t1) V(tm)) | Eo)edts . .. dtn,
XS [ [P E | T (V1) V() | Eo)dt ... dti (180)

k ikl J—oo

Gpy (t, t') zzll'/ / (Eo | T(ap( ) j]<t,>
x V(t)...V(t)) | Eo)edt...dt;.  (181)

3.5. DIAGRAM TECHNIQUES FOR GREEN’S FUNCTIONS

A diagrammatic representation for the contractions of
creation-annihilation operators in the perturbation ex-
pansion is a simple and expedient way to distinguish a
topological structure of the Wick’s pairings of the oper-
ators. In the diagrams each contraction is denoted by a
solid line ( two-index electron- hole line ) and the interac-
tion is denoted by the wavy line ( four-index vertex ). In
the first order we get two diagrams Fig.1,2 of Appendix,
which are associated with the following fully contracted
terms of Eq.(181)

—i Y [ Gpr(t,7) (kL] m,n)Gig (1,t) G (1,77 dT

k,l,m,n

i Y [ Gpr(t,T) (kL[ m,n) Gy (1,t) G (1,77) dr. (182)
ko lm,n

The analytical expression (182)is written according to the
correspondence rule: each solid line is associated with the
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Green’s function, each wavy line with the four-index two-
electron integral, which is time-independent; the total
product is integrated over the time variable, which corre-
sponds to the time of the interaction operator in Eq.(181),
and it is summed up over the indexes of the contractions
which correspond to the creation-annihilation operators
in the interaction operator; whole expression is multiplied
by the phase-factor i'(—1)* where I-is the order of the per-
turbation expansion and Y is the number of the closed
electron loops in the diagram. Using the Wick’s theorem
in the second order for the one-particle Green’s function,
we obtain the diagrams Fig.3. The complete perturbation
series is expressed by the connected Feynman diagrams
with two external solid lines. A diagram is compact if it
has not parts connected by one solid line and a diagram is
irreducible if it does not contain diagrams of lower order
as its parts. For example, from all connected diagrams of
the second order Fig.3 only last two diagrams are com-
pact and irreducible. The first diagram in this figure is
reducible and the second one is non-compact. From the
diagrams Fig.1,2,3 it is seen that they can be written as
integrals for operators GO (t,¢),G (¢, ), G (¢, ) which
correspond to matrices {qu(t Y G, (t, 1}, {G (AR)(1 ¢}
with the self-energy operator E(T 7') which corresponds
to the self-energy matrix {¥,,(¢,t)}

[drdr'GO (t, 1) (r,7) GO (7', 1), (183)

where

GO (1, 1) = (z@ _ iz)l it —1t) (184)



is the operator with the core from Eq.(140) A compact
self-energy operator is called mass-operator. In the first
order two diagrams for the mass operator are represented
on Fig.4 of Appendix. Using the mass-operator we can
write the Dyson equation

G(t,t) = GOt +
[drdr'GO) (t,7) M) (1,7) G (7, 1). (185)

Iterations of Eq.(185) give a relation between the mass-
operator M9 and the self-energy operator 3

G = GO+ GOl
— GO 4 GO 00 L GO a0 OG0

= GO L GOBGO, (186)

The mass-operator and the self-energy operator depend
in their turn on GO : M© = M© (é(o)), but performing
internal summations we can write a Dyson equation with
an irreducible mass-operator which depends on G

A ~ A~

G = GU+GOM (@)@, (187)

where the irreducible mass-operator M) (@) is repre-
sented by a perturbation expansion. The first order terms
of this expansion are in Fig.4 and the second order terms
are in Fig.9. If, for example, we use only the first order
terms for M) (é) Fig.4,5, we get the HF-Dyson equa-
tion for the Green’s function in the Hartree-Fock approx-
imation Fig.6. A graphical representation for the Dyson
equation (187) is given in Fig.10. It is in fact an exact
equation for the one-particle Green’s function which can
be used in model applications.
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4. IMAGINARY SHIFTS AND S-MATRIX BASED
CALCULATIONS FOR THE ENERGY

4.1. S-MATRIX AND RIESZ-KATO PERTURBATION THEORY

The Riesz-Kato perturbation expansion is based on the
contour integral representation of the energy shift:

E —Ey= A/B, (188)
with
1 1 l
A — o E mt— E dZ, 189
] o vt
B— ! > $(E | Loy r|E> (190)
2T 1=0,1,... 0 . ]fjo mtz _ Ho 0)d

As it was demonstrated in the Subsection 3.4. we can
write for expectation values of the

(Ey | SV | Ey) = (Eo | S (0, —00) | Eo) =

l
. 1
= (Ey | SY (00,0) | E E [n - ] Ey). (191
(Eo | Sy (00,0) | Eo) = (Eb | tEO—H0+z'fy|0>( )
Therefore,
1 l
— E S E = — E it =~ E dZ, 192
7{ (Eo | 557 | Eo) ZEji o] |Vi tZ—H()]| 0)dz, (192)
(B | 8| Eoydy
27rzL7 ’ ’
l
1 1 - 1
L Ly A (193
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and

1 A 1 A
A=Y — §(Ey | SV | Ey)dy = 2—f<E0 | Sy | Eo)dy  (194)

] 2Ty Ty
and
B=y_ § (B | 80| Bo)dy = —— § ~(By | §, | Eo)dy.(195)
T omid oyt D I A T

For the complete S -matrix

A A

Sy (007 _OO) = 5y (007 O)

Uy

+ (0, —00) (196)

we can write

N =

A= 5 f(By | 8,00, —00) | By =
(

(197)

S~
|

=2
s
QCQ
5
=

2

_ L_yfﬁwo | S, | Eo)dy. (198)

For isolated energy levels the second terms in Eqs.(197)
and (198) are equal to zero. Hence, we come to the for-
mula

1
E—Ey=_A/B (199)

Sucher ( 1957 )
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4.2. S,-MATRIX AND COMPLEX SHIFT IN ENERGY

From Eqs.(173)-(175) of Subsection 3.4. it follows that
the enegy shift can be also expressed as an adiabatic limit
of the fraction A,/B, with

A, = (Ey| V5, (0,—00) | Eo) = (Ey | S, (00,0)V | Ep), (200)

B, = (Ey | S, (0,—00) | Eo) = (Ey | 8 (00,0) | Eo)  (201)

and
E—FE,= flylil’%) A,/B,. (202)
Therefore the asymptotic formulas are valid
E—-Ey=A,/B,+... (203)
) S, (0, —o00) | Ey)

(Eol) ~ (Ey |8, (0,—00) | Eo)

and X
I (BlS(00
(| Eo)  (Eo|S,y(0,0) | Ep)
which gives a justification for complex shifts in the per-
turbation expansions for energy shifts and for wave func-

tions.

The Riesz-Kato perturbation expansions are not very
sensitive to reference states in our case it is | £y). Gener-
ally speaking this reference can be changed if we change
Hy; Hamiltonian. An estimate for a proper reference state
may be obtained from Eqs. (172) and (173):

l

, 1 o [ . 1

vy S Z{V - ] | Ep) =
Ey— Hy+ivi=1| Eg— Hy+ iy
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A 1

=S O,— Ey) =1 ~ E7
7 (0, —00) | Eo) ZVEO—HJri’y' 0)
l
1 ~ 1
<E0|Z[ : .V] =
Ey— Hy+ vy Ey— Hy + iy
1
= (Fy | S, (00,0) = iv(F, i 204
<0|7(00) W<O|E0—H+i7 (204)
and for
, 1 2
Ey| S — Ey) = (iv)*(E . Eq). (205
(Eo | 8, (00, ~o0) | En) = (0 B | (g | Eob-(205)
, 1
G (1) = —(Ey | 8, (00,0) T (S, (0,1)
Xafp(t)5<tt)a}q(t)57( 0)) Sy (0, OO)IEo)+ _
(Eq | Sy (00, —00) | Eq)
1 1
= —(F ~ T(S, (0,
B0 | g T (5,0

xary (1) S, (t,¢) al, (£) S, (£,0))

L | Ep)
BEREAR S B + ... . (2006)
<EO | (EO H+'w> | EO>

Eqgs.(204),(205) and (206) are used later in order to de-
fine the Green’s function which is obtained after a partial
summation.

4.3. PARTIAL SUMMATION IN EXPECTATION VALUES OF
S,-MATRICES

We consider now an exact (FCI) solution in a model sub-
space Ny with energy & which satisfies the Brillouin’s
conditions:

(Ec | apalH | Ec) = EclEc | apal | &)
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then the one-particle Green’s function

G (1) = (e | T (1, (1) 0} (1) | &) =
—i(€c | ape™ M Nal | £)0(t — ') +
+i(€e | ale ™ Na, | E)O(t' — 1), (207)

where e~#('=) acts in the subspace of all (N — 1)-particle

positive ionic states of the model subspace N:. The opera-
tor e (=) acts in the subspace all (N+1)-particle negative
ionic states of the model subspace N, with admixture of
(N +1)-particle negative ionic states with one virtual spin-
orbital. A corresponding contraction of the complete
Hamiltonian to this subspaces we denote ﬁc = izc + VC.
For the complete Hamiltonian we have:

H=he+Ve+h+W, (208)

where h¢ is the one-particle operator H, which was used
previously in thr perturbation expansion for the one-particle
Green’s function. A multiple perturbation expansion for
the S,-matrix is written the as the series:

(Ey | Sy | Eo) = > m'zmn'z” [ [{Eo | T( (209)

Wﬁg%ug“wammﬁmﬂ@y“mm@“.(mm
XiLl(O'l) ce iLl(O'n)) | E()>dt1 ce dtld’ﬁ ce dde0'1 “e dO’n. (211)

From this series we see that the diagrams with all possible
insertions with contractions of V. lead to a substitute of
all solid lines by the Green’s function:
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1 1

(E : T (S, (0,
A B he OO0
xary (t) S, (t,¢') af, (t') S, (t'70>)m|E0>+ -

(o () | Bo)
— —i(&c | ape™ gl | £000(t — t') +
+il€e | afe 0N, | E)OH ) + ... =
=G5, (t,1). (212)
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