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CHARGE EXCHANGE WITH SMALL ENERGY TRANSFER

Ju. N. Demkov

Physics Department, Leningrad University, Leningrad, USSR

A general formula is derived for electronic charge exchange when the change of the
energy of the electron is small relative to the distances between nearest energy levels in
both atomic systems. a

The deduction of the formula is analogous to that of the semiclassical Bohr quantum
conditions. For a special case a similar result was obtained earlier by Zener and Rosen.
The Massey criterion which defines the position of the maximum of the cross section is
examined more precisely. The oscillating character of the differential cross section,
analogous to that of the resonance charge exchange, is established.

The results obtained can also be applied to a number of other processes, such as an
excitation transfer in collisions between atoms or ions.

1. The formulation of the problem and qualitative considerations

If we suppose that nuclei are treated classically then in a two state approxi-
mation the process of the charge exchange can be described by a system of
two equations:

id=H11a+H12b (1)
ib = H21a+H22b

where the coefficients H;, are functions of the internuclear distance R which
itself depends from the time . The values a and b determine the probabilities
®, = |a* and w, = |b|? of the electron being near to the atom A or to the
atom B in definite atomic states ¥, and ¥. From the condition |a|? +|b]*> =
= 1 it follows that the matrix H;, must be hermitian. We shall not consider
here questions connected with the derivation of the system (1) in spite of
some uncertainty connected with nonorthogonality of the functions ¥, and
¥ at finite distances R. The functions H;, and H,, tend to the constants
at large R while next terms in their expansions at large R depend on the type
of collision. For the simplest case, the collision A* +B, we have

Hyy = —Ty—ay/R*+ ..., H,, = — Ty—ug/R%,

where o are the polarisabilities and T the ionisation potentials of atoms
A, B in states ¥, and ¥y. The exchange term H,, can be expressed as an
831
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integral containing the functions ¥, and ¥y and therefore exponentially

decreases at large R; the exponent is —\/ 2TR, where T is the smallest of the
ionisation potentials of atoms A and B.

If we impose the initial conditions [a(— )| = 1, b(—o) = 0 and inte-
grate the system (1) then the probability of charge exchange is determined by
value

2
@ = |b(0)|*.

For every value of R we can construct some linear combinations
¢t Pate, ¥y

which approximate the molecular functions @, and @ which tend at large R
to the ¥, and ¥5. The coefficients can be found as solutions of the system

(Hyy—A)ey+Hyzep =0, @)
Hjyici+(Hyp—A)e; = 0.

It can be shown easily that the type of the solutions essentially depends on
the relation between the quantities 4 = Hy, —H,, and H;,.

If |Hy,| < |4] then ¢; =1, ¢, %0, Ax~ Hyy or ¢, 0, ¢, =1,
A~ H,,.If however |H,,| > |A|then A & 3(H,+H,,)+|H;,l,¢; = 278,
¢, = +27%, and the situation is analogous to that of the resonance charge
exchange' 2, when the molecular functions can be approximately expressed
as symmetrical and antisymmetrical combinations of atomic ones. In the
resonance case H,; = H,, = 0, H,, is real and the equation (1) can be
solved exactly®’ 2,

Let us consider now the case when A, = (Hy;—Hj3)ro0 = T—Ta
is small and the exchange integral H,;, becomes equal to 4 at some R,
which is large relative to the size of atoms.

In this region the exchange integral decreases already exponentially and
therefore the interval R where the moduli of H;, and 4 are comparable is
approximately equal to (27) %

In this region the shape of molecular functions changes from being local-
ised and similar to the atomic ones ¥,, ¥y at R > R, to the symmetrical
and antisymmetrical combinations 27 *(¥,+ W) at R < R,. Therefore
we can suppose the nonadiabatic transitions take place only in this region
and in other regions the system develops adiabatically.

If the system passes the region § R during the time ¢ which is large relative
to the period of oscillations corresponding to the exchange frequency
H,, ~ Ai.e.if 6t - A > 1, then the probability of charge exchange is expo-
nentially small. On the other hand if 67 -+ A < 1, then the change of molecular
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functions will be of an occasional character and we must simply reexpand
the previous function ¥, in the form of the superposition of ¥,+ ¥g,
¥, — ¥ i.e. we have the case of resonant charge exchange, and the probabil-
ity changes rapidly and oscillates between zero and unity.

2. The formula for the probability of charge exchange

To obtain quantitative results let us divide the whole interval —co < ¢ <
into 5 regions: (I) R> Ry, (I) R ~ Ry, (III) R < Ry, (IV) R ~ Ry,
(V) R > R,. The motion is symmetrical relative to the inversion of time and
therefore the solutions of equations (1)in regions I, V and II, IV are similar.
We shall suppose that in regions I, III and V there are no non-adiabatic
transitions and therefore the solution can be written at once. If we solve the
problem in regions IT and IV we can join the solutions in all regions and
obtain .

Such consideration is analogous to the semiclassical method for determi-
nation of the wave function and of the energy of a particle in a one dimen-
sional potential (or the coefficient of transition through a potential barrier).
The role of the coordinate is played here by the time, and the regions IT, IV
are analogous to the turning points where the semiclassical (adiabatical)
approximation is not applicable and therefore they demand special consider-
ation.

Just as in the case of turning points we can approximate the functions H,
in regions II, IV by simple functions for which the equations (1) have an
exact solution. In this case it is natural to make the assumption that H,,, H,,
are constants and H,, exponentially decreases.

We have than a system of equations

id = aa+pe’b
ib = —ab+fe’a ()

(by a phase transformation it is easy to make H, + H,, = 0). The solution
of these equations which has the correct form in the region I i.e. satisfies
the conditions |a(—o0)| = 1, b(—0) = 0, can be obtained easily:

3
a= (n—‘B sech 72) o S (E e”) :
2y 2y ’

b= —i (n—ﬁ sech E)ZC%W‘L}-M/Y(EE”) :
2y 2y Y

A

“

At large positive values of the argument of the Bessel functions we can
use the asymptotic formulas which are applicable in the region III:
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+
a~ (sech @) cos (E ey’+iﬂ) ,

2y Y 2y )
b~ —i (sech la)z sin (Ee"+i EO—C) .
2y ? 2y

In the region III we can write also the usual adiabatical solution neglecting
the term A = HII_HZZ

a = A cos (lezdr+¢) -
(6)
b = —iA Sin (lezdt‘f"(P) .

The comparison of (5) and (6) enables us to choose the right amplitude 4
and phase ¢. We have then for the region III:

1 ¢
a = (sech 72‘) cos (f ledt+iy) ;
2y - 2y

o\ % ‘ Y @
b= —i (sech—) sin (f ledt+i—) .
2')} ) 2'))
In region IV we have to solve the system
s —pt’
1d = aa+fie”"b, (8)

ib = —ab+fe "a,

where ¢ differs from ¢ only by a constant.
Further we must join the obtained solution with (7) in the region III
and obtain the value [0] at 1 — co. We have then

2 + o 2
& = (sech ?) ; (sinf ledt) . 9
P -

The meaning of parameters a« and y is obvious: o = 14 and yt = (2T)*R.
If we expand R(?) in powers of ¢ in vicinity of R, and keep only two terms,
we have

v = (2T)*(dR/d1)g, . (10)

Using arbitrary units and these expressions for « and y we have finally

o[l ) Tl

Let us estimate the limits of applicability of this formula.
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They follow first from the assumption we made that 4 = H{;—H,,
remains approximately constant in the region where H,, changes exponen-
tially from values appreciably larger than A4 to the values appreciably smaller
than it. The exponential decrease of H,, begins at some distance not very
much larger than the sum of the atomic radii.

Let us estimate now the size of critical region. The splitting of energy
terms from one side of interval must be determined by the value of 4 and,
from the other side by the value of H,,. If we assume that at the ends of
interval these values differ at most by two then the largest one already
gives 90 % of the whole splitting. Therefore we can practically assume the
region R is of the order (2T)* i.e. is comparable with the size of the atoms.
If we take into account the oscillation of the electronic wave functions,
(2T)"* and consequently 6R can be even less then the size of the atom.
Further, the region where 4 is practically constant can be estimated if we
assume that the deviation of integrals H,,, H,, from constant values is
determined by electrostatic interactions between nucleus and electronic
clouds and neglect the slow varying polarisation term (collisions of type

AT +B). Such interaction decreases more rapidly (exp (—2\/ 21 R)) than
the exchange term and therefore this condition gives no additional limitations.

So we see that the values R, must be more than 2 ~ 2.5 times larger than
the atomic size. This corresponds to the energy transfer of about + or less
of the ionisation potential. There is another limitation. Namely, we assumed
that dR/dt is constant in the critical region dR. The validity of this assump-
tion can be easily estimated from geometrical considerations. At sufficiently
small impact parameter p it is always satisfied (except at very small veloci-
ties). If p approaches R, the situation becomes worse, but at these values of
p the probability is small and brings in only small contribution in the cross
section.

So the effective small parameters of the theory are the relative change of
the values A and dR/dt in the region dR. Finally some limitations arise from
the two-level approximation itself. It is evident that we must take into ac-
count all processes which can go with appreciable probability. Therefore
the energy transfer must be at least several time less than the distance from
the nearest terms of the same symmetry. This limitation exceeds all others
and therefore controls the validity of formula (11).

There remain of course the usual limitations connected with the classical
consideration of nuclei (for low velocities), with the momentum transfer by
electron from one atom to another (at high velocities) etc.
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3. Discussion

The formula derived enables us to make some preliminary remarks,

1. At 4 = 0 it passes into well known formula for symmetrical charge
exchange. We obtain the same formula if the impact parameter p is less
than R, and the parameter s = nd/(2mT)*v is small. Then the cross section
can be estimated by formula ¢ = 1nR? where R, is the value of the impact
parameter at which (1/4) [T® H,,dt is comparable with unity. The cross
section cannot exceed however the quantity 4nRj, this quantity gives the
order of the maximum of the cross section.

2. At low velocities, when the cross section decreases with velocity, a
rough estimation gives an asymptotic formula which is valid at s > 2

—Ss
.

o~ 4nR}s e

We replaced here sin squared by 4 and (dR/dr);, was obtained from geo-
metrical considerations. The cross section exponentially decreases with
velocity, so the qualitative considerations of section 1 are confirmed.

3. The characteristic parameter s = A/ V/2Tv determines the behavior of
the cross section at low velocities and (less accurately) the position of the
maximum of the cross section (s ~ 1). This parameter coincides with the
parameter which is used in the well known Massey criterion®* for the
same purpose

Al ~ 1, (13)

where / is some parameter comparable with the atomic size. It is seen from
comparison that for small 4, /is equal to n(27) %,

It is interesting that the parameter s does not contain the Planck constant 4
and the Massey criterion is in this case, in fact, a classical criterion.

4. Atlow velocities the cross section is small, but the probability decreases
slowly as the impact parameter increases: the process takes place at small
angle scattering and we have (so to say) a very transparent target of large
dimensions — about 7R3. On the contrary at high velocities after the cross
section reaches its maximum it decreases as in the resonance case.

5. If we take into account the curvature of trajectories and do not smooth
the sin squared we can calculate oscillations of the differential cross section
like those which were predicted™? and observed® for symmetrical charge
exchange. There is a difference from the symmetrical case; namely the proba-
bility oscillates between zero and some value less than unity. These oscilla-
tions are the most characteristic feature of that theory and show that the
nonadiabatic transitions take place only in a relatively small region, and
beyond this region the molecular states interfere. No doubt the oscillations
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of the differential cross section observed in 3 (for example the H™ + He case)
are due to such interference.

6. In region III, during the approach of the atoms the values Hy, and 4
can become comparable again, so we must replace [in the formula (11)]

the integrand H,, by v HZ,+ A? i.e. we can use in region III the real energy
terms.

7. It can happen that the real terms approach very closely in region III;
then we have an additional nonadiabatic region which must be treated with
the use of the Landau-Zener formula % 7. The nonadiabatic region also can
arise at very small R near the point of closest approach.

8. In the derivation of the Landau-Zener formula we suppose that in the
nonadiabatic region the exchange integral H,, is constant and the difference
A varies rapidly and depends linearly on r. In the derivation of formula (11),
on the contrary, we suppose that 4 is constant, but H,, varies rapidly and
so we consider an opposite limiting case.

9. The changes of the values H,,, H,, at R > R, which are connected
with polarisation, Coulomb interaction etc. (i.e. with nonexchange proces-
ses) do not directly influence the probability of charge exchange. They can
change only the value of 4 at R # R,. So even at exact accidental resonance
when H,, = H,, at R = o0, A(R,) will be different from zero. For the
process A" +B — A+B" for instance, 4 and R, can be found in such case
from the equation

4 = |°CA—°‘13|/R4 = |H12(Ro)|- (14)

10. It can happen that H,, increases at small R so rapidly that the equa-
tion H,, = 4 is satisfied at R, which is smaller than the atomic size, or is
never satisfied at all. Then the formula is not applicable. This consideration
is especially valid if we have “charge-asymmetrical” collision, for example
He™*+H —» H" +He (2s, 2p).

11. The formula is not applicable at high velocities of colliding particles
(v » 1) when we must take into account the transfer of momentum by
electrons and multiply ¥,, ¥y by the factor ¢®'" which causes a decrease
of the cross section.

12. For a special case, when H,; = —H,, = « and Hy, = f sech yt
the system (I) was integrated exactly by Zener and Rosen®. Formula (10)
is in this case an exact one. The advantage of our derivation consists in that
we make a minimum of assumptions about the behavior of Hy beyond the
regions II, TV, and it can be clearly seen that the transitions are connected
only with the behavior of H,; in these critical regions. From the Zener-Rosen
model these conclusions cannot be seen directly.
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13. To obtain parameter R, we must know H,, as a function of R for
large R. Sometimes this function can be estimated (i.e. from the binding
energy of the molecular ion AB™) sometimes it can be calculated, but as a
rule we know only the order of magnitude of Hy,, which corresponds to
the error about dR in determination of R,. So R, is in fact an adjustable
parameter. Perhaps the formula (11) can be used to obtain H,, from the
experimental data for charge exchange.

14. We do not make any assumption about the analyticity. However this
feature is important if we consider the asymptotic behavior of probability
atv — 0. The jumps in H;; or in their derivatives imply that e is proportional
to some power of v at small v. The smoother the functions H,;, the further
in the region of small v we can apply formulae of type (11) or the Landau-
Zener formula.

15. The system (1) and the assumptions made about H;, are of very gen-
eral character, and therefore the results obtained can be applied to various
problems when a transition between two close energy states takes place due
to a smooth perturbation which depends on time and exponentially decreases
as t -» + oo. Examples are the transfer of excitation between s-states in a
collision between atoms, experiments of Stern-Gerlach type 8, the transition
between fs or hfs levels etc.
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